New paper: Increasing the dimensionality of quantum walks using multiple walkers

Download the full article here.

We show that with the addition of multiple walkers, quantum walks on a line can be transformed into lattice graphs of higher dimension. Thus, multi-walker walks can simulate single-walker walks on higher dimensional graphs and vice versa. This exponential complexity opens up new applications for present-day quantum walk experiments. We discuss the applications of such higher-dimensional structures and how they relate to linear optics quantum computing. In particular we show that multi-walker quantum walks are equivalent to the BosonSampling model for linear optics quantum computation proposed by Aaronson & Arkhipov. With the addition of control over phase-defects in the lattice, which can be simulated with entangling gates, asymmetric lattice structures can be constructed which are universal for quantum computation.

If you enjoyed this article, please consider sharing it!
Icon Icon Icon

Related Posts